pip uninstall numpy==2.0.2
!pip install numpy==1.26.4
Restart kernel
!pip install gensim openai==1.12.0 requests
import requests
import gensim.downloader as api
import re
model = api.load('word2vec-google-news-300')
similar_words = [word for word, _ in model.most_similar('happy', topn=5)]
original_prompt = "What makes a person truly happy?"
enriched_prompt = f"What are the factors that make a person feel {'/'.join(similar_words)}?"
openrouter_api_key = "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"
openrouter_url = "https://openrouter.ai/api/v1/chat/completions"
def get_openrouter_response(prompt):
headers = {
"Authorization": f"Bearer {openrouter_api_key}",
"Content-Type": "application/json"
}
data = {
"model": "openai/gpt-3.5-turbo",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 300
}
response = requests.post(openrouter_url, headers=headers, json=data)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"].strip()
else:
return f"Error: {response.text}"
response_original = get_openrouter_response(original_prompt)
response_enriched = get_openrouter_response(enriched_prompt)
print(response_original)
print(response_enriched)
def count_sentences(text):
sentences = re.split(r'[.!?]|\n-', text)
sentences = [s.strip() for s in sentences if s.strip()]
return len(sentences)
print("\nComparison of Responses:")
print("\nOriginal Prompt Response Length:", len(response_original))
print("Enriched Prompt Response Length:", len(response_enriched))
print("\nOriginal Prompt Response Detail:", count_sentences(response_original))
print("Enriched Prompt Response Detail:", count_sentences(response_enriched))
Comments
Post a Comment